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Abstract

This paper focuses on the geometrically nonlinear dynamic analysis of an eccentrically prestressed simply supported

damped beam subjected to a concentrated moving harmonic load. The nonlinear dynamic deflections of the beam are

obtained by polynomial functions. The Kelvin–Voigt model for the material of the beam is used. Two coupled nonlinear

systems of equations of motion are derived using Lagrange’s equations under the assumptions of the Euler–Bernoulli beam

theory with the von-Kármán’s nonlinear strain–displacement relationships. The rotary inertia, axial displacement and

axial inertia are included in the formulation. The nonlinear equations of motion are solved by using the implicit time

integration method of Newmark-b in conjunction with the Newton–Raphson iteration method. In this study, the effects of

large deflections, the internal damping of the beam, the velocity of the moving harmonic load, the prestress load, the

eccentricity of the prestress load and the excitation frequency on the dynamic response of the beam are discussed. The

obtained results are compared with the results based on the linear beam theory. Convergence studies are performed.

Numerical results show that the above-mentioned effects play a very important role in the deflections of the beam.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Linear and nonlinear free and forced vibrations of structural elements, such as beams and plates, have been
studied extensively. When beams (or plates) are subjected to loads with large magnitude or to harmonic loads
whose frequency is close to natural frequency of the beam, the beam may vibrate with large amplitude. For
this reason, the linear beam theory (small deflection theory) may give erroneous results so that it must be
extended to include the effects of the large deflection. Although beams subjected to moving loads have been
widely studied according to the linear beam theory (see Refs. [1–19]), the research effort devoted to nonlinear
vibration of beams under the moving loads has been limited. For example, Hino et al. [20] analyzed the
nonlinear vibrations of variable cross-sectional beams subjected to a moving load using the Galerkin finite
element method. Yoshimura et al. [21] presented the analysis of dynamic deflections of a beam, including the
effects of geometric nonlinearity, using the Galerkin method, a form of the method of weighted residuals.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a0,y,a7 parameters in Newmark’s method
A area of the cross-section
An time-dependent generalized coordinate

of the transverse displacements
b0,b1,b2 parameters in the Kelvin–Voigt model
b width of the cross-section
Bn time-dependent generalized coordinate

of the axial displacements
c(t) unit step function
cb a coefficient of the internal damping of

the beam
C damping matrix
D dissipation function
e eccentricity of the prestress load
E Young’s modulus
f (t) generalized load vector
F̂ effective load vector
h depth of the cross-section
I moment of inertia of the cross-section
J functional of the problem
J* Lagrangian functional of the problem
Ke kinetic energy of the beam
KL linear stiffness matrix
KS

6 ; . . . :;K
S
9 matrices due to Lagrange multipliers

K
NL nonlinear stiffness matrix

K̂ effective stiffness matrix
K̂T tangent stiffness matrix
L length of the beam
M mass matrix of the beam
Mb bending moment
MT couple due to the eccentricity of pres-

tress load
N number of terms in the displacement

functions
Nx internal normal force

P(t) moving harmonic load
P0 amplitude of the moving harmonic load
q(t) generalized coordinates
QD generalized damping force
R residual vector
s iteration number
t time
t1 time the load P(t) comes onto the beam
t2 time the load P(t) leaves the beam
T eccentric prestress load
Tcr Euler’s buckling load
u axial displacement
u0 axial displacement of any point on the

neutral axis
U strain energy of the beam
n velocity of the moving harmonic load
V potential of the external loads
w transverse displacement
w0 transverse displacement of any point on

the neutral axis
x x coordinate
xP location of the moving harmonic load
z z coordinate

Greek letters

a,d parameters in Newmark’s method
b1,b2,b3 Lagrange multipliers
ex normal strain
ztol tolerance criterion
Z proportionality constant of the damp-

ing
r mass of the beam per unit volume
sx normal stress
o1l the first linear natural frequency
O excitation frequency of the moving

harmonic load
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Yoshimura et al. [22] used the finite element method to investigate the random nonlinear vibration
analysis of variable cross-sectional beams subjected to a moving load. Chang and Liu [23] performed
the deterministic and random vibration analysis of a nonlinear beam on an elastic foundation subjected
to a moving load by the finite element method. Xu et al. [24] studied the transverse and longitudinal
motions of a finite elastic beam traversed by a moving mass using Hamilton’s principle. In Ref. [24],
the obtained two nonlinear coupled differential equations governing the longitudinal and transverse
displacements were solved by a finite difference method combined with a perturbation technique. Wang and
Chou [25] adopted the large deflection theory to study the nonlinear vibration of the Timoshenko beam
caused by the coupling effect of a moving force with the weight of the beam. Yanmeni et al. [26] investigated
the nonlinear dynamics of a beam under moving loads using the multiple scales method. In Ref. [26], attention
is paid to nonlinearity, which may be caused by large curvatures or nonlinear stretching of the mid-plane
of the beam.
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Pre-tensioning or post-tensioning is widely used in civil engineering applications, such as prestressed beams
of viaducts of roadways, railways and bridges. Prestressing involves the application of an initial compressive
load on a structure to reduce or eliminate the internal tensile stresses that may be caused by imposed loads or
deformations, or by load-independent effects such as temperature changes or shrinkage. To the best of the
authors’ knowledge, this is the first attempt on the geometrically nonlinear vibration of an eccentrically
prestressed damped beam subjected to a moving harmonic load. In the studies [20–26] on geometrically
nonlinear beams mentioned above, there is no prestress load and the moving load is not harmonic, namely it is
a constant moving load.

The aim of this paper is to investigate the geometrically nonlinear vibration of an eccentrically prestressed
damped beam subjected to a concentrated moving harmonic load. In this study, von-Kármán’s nonlinear
strain–displacement relationships are used. The externally applied eccentric prestressed load is resolved into an
axial prestressed load and a couple at the center of the cross-section of the beam. The nonlinear dynamic
responses of the beam are obtained by the polynomial functions. The Kelvin–Voigt model for the material of
the beam is used. Two coupled nonlinear systems of equations of motion are derived by using Lagrange’s
equations under the assumptions of the Euler–Bernoulli beam theory. Rotary inertia, axial displacement and
axial inertia are included in the formulation. The equations of motion are solved by using the implicit time
integration method of Newmark-b [28] in conjunction with the Newton–Raphson method, and then
displacements, velocities and accelerations of the beam at the considered point and time are determined.
Convergence studies are performed for various number of the term in the displacement functions, and for the
different time steps. The obtained nonlinear results are compared with the results based on the linear beam
theory.

2. Theory and formulations

An eccentrically prestressed simply supported isotropic beam of length L, width b, depth h, with the
coordinate system (O; x, y, z) having the origin O is shown in Fig. 1. The beam is subjected to the externally
applied eccentric prestress load, T, and the concentrated moving harmonic load, P(t), which moves in the axial
direction of the beam with constant velocity.

The canonical form of the Kelvin–Voigt model and its special case, which is used in the present study,
can be expressed as follows:

b0sx ¼ b1�x þ b2_�x; b0 ¼ 1; b1 ¼ E; b2 ¼ cb ¼ EZ (1a)
zA
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Fig. 1. (a) An eccentrically prestressed simply supported beam subjected to a moving harmonic load, (b) transferring the eccentric

compressive load to the center of the cross-section of the beam as a compressive axial load and a couple.
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sx ¼ se
x þ sd

x ¼ E�x þ cb_�x ¼ Eð�x þ Z_�xÞ (1b)

where ð�Þ indicates the derivative with respect to time, sx is the normal stress, E Young’s modulus, cb the
coefficient of the internal damping of the beam and Z the proportionality constant of the internal damping of
the beam. Dimensions of the coefficient of the internal damping of the beam and proportionality constant of
the internal damping of the beam are N s/m2 and s, respectively.

Based on the Euler–Bernoulli beam theory, the axial displacement, u, and the transverse displacement of
any point of the beam, w, are given by

uðx; z; tÞ ¼ u0ðx; tÞ � z
qw0ðx; tÞ

qx
(2a)

wðx; z; tÞ ¼ w0ðx; tÞ (2b)

where u0 and w0 are the axial and the transverse displacement of any point on the neutral axis, z is the distance
of any point from the neutral axis, t denotes time. The von-Kármán’s nonlinear strain–displacement
relationships based on assumptions of large transverse displacements, moderate rotations and small strains for
a straight beam are given below:

�x ¼
qu0ðx; tÞ

qx
þ

1

2

qw0ðx; tÞ

qx

� �2

� z
q2w0ðx; tÞ

qx2
(3a)

_�x ¼
q _u0ðx; tÞ

qx
þ

qw0ðx; tÞ

qx

� �
q _w0ðx; tÞ

qx

� �
� z

q2 _w0ðx; tÞ

qx2
(3b)

where ex and _�x are the normal strain and normal strain rate, respectively. Using Eqs. (1) and (3), the
Euler–Bernoulli beam theory that normal stresses and strains vary linearly over the cross-section of the beam
leads to the relations

Mb ¼ �EI
q2w0ðx; tÞ

qx2
� ZEI

q2 _w0ðx; tÞ

qx2
(4a)

Nx ¼ EA
qu0ðx; tÞ

qx
þ

1

2

qw0ðx; tÞ

qx

� �2
" #

þ ZEA
q _u0ðx; tÞ

qx
þ

qw0ðx; tÞ

qx

� �
q _w0ðx; tÞ

qx

� �� �
(4b)

where Mb is the bending moment, Nx the internal normal force, I the moment of inertia of the cross-section of
the beam, A the area of the cross-section of the beam. According to the Euler–Bernoulli beam theory, the
strain energy of the beam, U, at any instant is

U ¼
1

2

Z L=2

�L=2

Z
A

se
x�x dAdx (5)

With the help of Eqs. (1) and (3a), the strain energy of the beam at any instant can be expressed as

U ¼
1

2

Z L=2

�L=2
EA

qu0ðx; tÞ

qx
þ

1

2

qw0ðx; tÞ

qx

� �2
" #2

þ EI
q2w0ðx; tÞ

qx2

� �2
8<
:

9=
;dx (6)

The dissipation function of the beam, D, at any instant is given below

D ¼
1

2

Z L=2

�L=2

Z
A

sd
x_�xdAdx (7)
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Likewise, the dissipation function of the beam at any instant can be obtained as follows:

D ¼
1

2

Z L=2

�L=2
ZEA

q _u0ðx; tÞ

qx

� �2

þ ZEI
q2 _w0ðx; tÞ

qx2

� �2
" #(

þZEA
qw0ðx; tÞ

qx

� �
q _w0ðx; tÞ

qx

� �� �2
þ 2ZEA

q _u0ðx; tÞ

qx

� �
qw0ðx; tÞ

qx

� �
q _w0ðx; tÞ

qx

� �)
dx (8)

The last two terms are very small compared with the first two terms in Eq. (8), and they are neglected.
In this case, Eq. (8) becomes as follows:

D ¼
1

2

Z L=2

�L=2
ZEA

q _u0ðx; tÞ

qx

� �2

þ ZEI
q2 _w0ðx; tÞ

qx2

� �2
" #

dx (9)

Including the rotary inertia and the axial inertia effects, the kinetic energy of the beam, Ke, at any instant
can be expressed as

Ke ¼
1

2

Z L=2

�L=2
rA

qu0ðx; tÞ

qt

� �2

þ rA
qw0ðx; tÞ

qt

� �2

þ rI
q2w0ðx; tÞ

qxqt

� �2
" #

dx (10)

where r is the mass of the beam per unit volume. The eccentric prestress load, T, can be transferred to the
gravity center of the cross-section of the beam as an axial prestress load and a couple (see Fig. 1b). In this case,
the potential of the external loads and the couples at any instant is given below:

V ¼ �PðtÞw0ðxP; tÞ½cðt� t1Þ � cðt� t2Þ� þ Tu0ðL=2; tÞ þMT

qw0ð�L=2; tÞ

qx
�MT

qw0ðL=2; tÞ

qx
(11a)

cðtÞ ¼
1; 0pt

0; 04t

(
(11b)

PðtÞ ¼ P0 sinðOtÞ (11c)

MT ¼ Te (11d)

where P0 is the amplitude of the moving harmonic load, O the excitation frequency of the moving harmonic
load, c(t) the unit step function, t1 the time when the load P(t) just comes onto the beam (t1 is considered as
zero in this study), t2 the time when the load P(t) just leaves the beam, e the eccentricity of the prestress load
and xP(t) the location of the moving harmonic load at any instant and expressed as

xPðtÞ ¼ vt� L=2; �L=2pxPðtÞpL=2; t1 ¼ 0ptpt2 ¼ L=v (12)

where v is the velocity of the moving harmonic load along the axial direction. The functional of the problem is
given below:

J ¼ Ke � ðU þ V Þ (13)

As it is known, Hamilton’s principle can be expressed as Lagrange equations when the functions of infinite
dimensions can be expressed in terms of generalized coordinates qn(t). In this situation, when some expressions
satisfying kinematic boundary conditions are selected for w0(x,t) and u0(x,t), then by using the Lagrange
equations, the natural (dynamic) boundary conditions are also satisfied. Therefore, by using the Lagrange
equations and by assuming the transverse displacements w0(x,t) and the longitudinal displacements u0(x,t) to
be representable by a series of admissible functions and by adjusting the coefficients in the series to satisfy
the Lagrange equations, approximate solutions are found for the transverse and longitudinal displacements.
To apply the Lagrange equations, the displacement functions w0(x,t) and u0(x,t) are approximated by the
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following series:

w0ðx; tÞ ¼
XN

n¼1

AnðtÞx
n�1 (14a)

u0ðx; tÞ ¼
XN

n¼1

BnðtÞx
n�1 (14b)

where An(t) and Bn(t) are time-dependent generalized coordinates. Kinematic (geometric) boundary conditions
of the simply supported beam with one movable support are

u0ðx; tÞ ¼ 0 at x ¼ �L=2; w0ðx; tÞ ¼ 0 at x ¼ �L=2;L=2 (15)

It is seen from Eqs. (14a to b) that kinematic boundary conditions given by Eq. (15) are not satisfied for
w0(x,t) and u0(x,t). Thus, the constraint conditions of the supports are satisfied by using the Lagrange
multipliers. The Lagrange multipliers formulation of the considered problem requires constructing the
Lagrangian functional as follows:

Jn ¼ J þ b1w0ð�L=2; tÞ þ b2w0ðL=2; tÞ þ b3u0ð�L=2; tÞ (16)

In Eq. (16), b1, b2 and b3 quantities are the Lagrange multipliers, which are the support reactions in the
considered problem. By introducing the following definitions:

qn ¼ An; n ¼ 1; 2; . . . ;N (17a)

qn ¼ Bn�N ; n ¼ N þ 1; . . . ; 2N (17b)

q2Nþ1 ¼ b1; q2Nþ2 ¼ b2; q2Nþ3 ¼ b3 (17c)

After substituting Eq. (14) into Eq. (16) and then using the Lagrange’s equations,

qJn

qqn

�
d

dt

qJn

q _qn

� �
þQD ¼ 0; n ¼ 1; 2; . . . ; 2N þ 3 (18)

where QD is the generalized damping force that can be obtained from the dissipation function by
differentiating D with respect to _qn

QD ¼ �
qD

q _qn

; n ¼ 1; 2; 3; :::; 2N þ 3 (19)

yields the following two coupled nonlinear systems of equations of motion:

KL
1

� �
N�N

0½ �N�N KS
6

� �
N�3

0½ �N�N KL
2

� �
N�N

KS
7

� �
N�3

KS
8

� �
3�N

KS
9

� �
3�N

0½ �3�3

2
6664

3
7775

A tð Þ

B tð Þ

b tð Þ

8>><
>>:

9>>=
>>;þ

KNL
3 A tð Þð Þ

� �
N�N

KNL
4 A tð Þð Þ

� �
N�N

0½ �N�3

KNL
5 A tð Þð Þ

� �
N�N

0½ �N�N 0½ �N�3

0½ �3�N 0½ �3�N 0½ �3�3

2
6664

3
7775

A tð Þ

B tð Þ

0

8>><
>>:

9>>=
>>;

þ Z

KL
1

� �
N�N

0½ �N�N 0½ �N�3

0½ �N�N KL
2

� �
N�N

0½ �N�3

0½ �3�N 0½ �3�N 0½ �3�3

2
6664

3
7775

_A tð Þ

_B tð Þ

0

8>><
>>:

9>>=
>>;þ

ML
1

� �
N�N

0½ �N�N 0½ �N�3

0½ �N�N ML
2

� �
N�N

0½ �N�3

0½ �3�N 0½ �3�N 0½ �3�3

2
6664

3
7775

€A tð Þ

€B tð Þ

0

8>><
>>:

9>>=
>>; ¼

f1 tð Þ

f2 tð Þ

0

8>><
>>:

9>>=
>>;
(20)

where KL
1 is the linear bending stiffness matrix, KL

2 is the linear axial stiffness matrix, matrices KS
6 ;K

S
7 ;K

S
8 and

KS
9 exist due to Lagrange multipliers, KNL

3 is the nonlinear stiffness matrix that is quadratically dependent on
the generalized coordinates, both KNL

4 and KNL
5 are the nonlinear stiffness matrices that are linearly dependent

on the generalized coordinates, M1 is the bending mass matrix, M2 is the axial mass matrix, f1 is the vector of
the generalized load generated by the moving harmonic load and the couple, f2 is the vector of the generalized
load generated by the external prestress load. The equations of motion are solved by using the implicit time
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integration method of Newmark-b in conjunction with the Newton–Raphson method, and then the
displacements, velocities and accelerations of the beam at the considered point and time are determined for
any time t between 0ptpL/v. Furthermore, for calculating the terms of the stiffness and mass matrices in
Eq. (20), the Gaussian quadrature is used.

The equations of motion (20) can be written in a compact matrix form as follows:

KLqðtÞ þ KNLðqðtÞÞqðtÞ þ C_qðtÞ þM€qðtÞ ¼ FðtÞ (21)

where q(t) ¼ {A(t), B(t), b(t)}T. It is also worth noting at this stage that, when there is no concentrated moving
harmonic load on the beam, the beam is at rest and also it is in a bent configuration under the eccentric axial
prestress load. In this case, the initial velocities and accelerations of the beam are zero; however, the initial
displacements are not zero at time t ¼ 0. Therefore, the initial displacements caused by the eccentric prestress
load should be calculated from a nonlinear static analysis and must be introduced to the problem at the
beginning of the Newmark-b algorithm.

3. Solution of the equations of motion

The time domain equations of motion equation (21) can be solved by using the average acceleration method
of Newmark-b in conjunction with an iteration method, such as direct iteration or the Newton–Raphson
method. By using the average acceleration method of Newmark-b, the nonlinear differential equations of
motion (21) can be reduced to the following set of nonlinear algebraic equations [27]:

K̂ðqiþ1Þqiþ1 ¼ F̂i;iþ1 (22)

where subscript i+1 denotes the time t ¼ ti+1, K̂ðqiþ1Þ and F̂i;iþ1 are the effective stiffness matrix and the
effective load vector, which can be expressed as

K̂ðqiþ1Þ ¼ KL þ KNLðqiþ1Þ þ a0Mþ a1C (23a)

F̂i;iþ1 ¼ Fiþ1 þMða0qi þ a2 _qi þ a3 €qiÞ þ Cða1qi þ a4 _qi þ a5 €qiÞ (23b)

where

a0 ¼
1

aDt2
; a1 ¼

d
aDt

; a2 ¼
1

aDt
; a3 ¼

1

2a
� 1 ; a4 ¼

d
a
� 1

a5 ¼
Dt

2

d
a
� 2

� �
; a6 ¼ Dtð1� dÞ; a7 ¼ dDt; d ¼ 0:5; a ¼ 0:25 (24)

In order to solve the nonlinear algebraic equations (22), an iterative solution procedure should be used. In
this study, the Newton–Raphson method is used to solve the above-mentioned equations. Eq. (22) at any fixed
time can be written as follows [27]:

Rðqiþ1Þ � K̂ðqiþ1Þqiþ1 � F̂i;iþ1 ¼ 0 (25)

where R is the residual vector. By assuming that the solution qs�1
iþ1 at the (s�1) st iteration is known,

the residual vector R can be expanded in Taylor’s series about the known solution qs�1
iþ1 as follows:

Rðqiþ1Þ ¼ Rðqs�1
iþ1 Þ þ

qRðqiþ1Þ

qqiþ1

� �s�1

� dqiþ1 þ � � � ¼ 0 (26)

Neglecting the terms of order two and higher gives the following equations:

K̂T ðq
s�1
iþ1 Þ � dqiþ1 ¼ �Rðq

s�1
iþ1 Þ ¼ F̂i;iþ1 � K̂ðqs�1

iþ1 Þq
s�1
iþ1 (27)

where K̂T is the tangent stiffness matrix, which is defined as follows:

K̂T ðq
s�1
iþ1 Þ �

qRðqiþ1Þ

qqiþ1

� �s�1

(28)
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Incremental displacements, dqi+1, and the solution at the (s) th iteration, qs
i+1, can be easily calculated by

dqiþ1 ¼ �K̂
�1

T ðq
s�1
iþ1 ÞRðq

s�1
iþ1 Þ (29a)

qs
iþ1 ¼ qs�1

iþ1 þ dqiþ1 (29b)

This procedure is continued until the difference between two successive solution vectors is less than a
selected tolerance criterion in Euclidean norm given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2Nþ3

n¼1 qs
n � qs�1

n

		 		2P2Nþ3
n¼1 qs

n

		 		2
vuut pztol (30)

Once Eq. (22) is solved for the displacements q at time t ¼ ti+1, the new acceleration vector €q, and the new
velocity vector _q at time t ¼ ti+1 are computed from the following equations:

€qiþ1 ¼ a0ðqiþ1 � qiÞ � a2 _qi � a3 €qi (31a)

_qiþ1 ¼ _qi þ a6 €qi þ a7 €qiþ1 (31b)

After the displacements qi+1, the accelerations €qiþ1 and the velocities _qiþ1 are calculated, which correspond
to time t ¼ ti+1, all these procedures mentioned above are repeated for the next time step. Meanwhile, in
general, when solving the nonlinear equations, the initial solution vector is chosen to be zero vector, namely,
the first iteration solution corresponds to the linear solution.

4. Numerical results

In numerical results, the nonlinear dynamic responses of an eccentrically prestressed damped simply
supported beam are investigated. The dynamic deflections, velocities and accelerations are calculated
numerically and presented in figures. The effects of the large deflections, the velocity of the moving harmonic
load, the prestress load and the excitation frequency of the moving harmonic load on the dynamic response of
the beam are discussed. The obtained results are compared with the results based on the linear beam theory.
It is clear that the corresponding linear problem can be solved by making KNL

¼ 0 in Eq. (21). The material
properties of the considered beam are as follows: E ¼ 35GPa, rA ¼ 1500 kg/m, and other parameters of the
beams and the moving load are taken as various values to investigate the above-mentioned effects. Also, the
tolerance criterion ztol is taken equal to 0.0001 in the numerical calculations.

In Tables 1–2, comparison and numerical convergence studies are performed with various numbers of terms
of displacement functions and various time steps by calculating the maximum dynamic deflections at the mid-
point of the beam according to both linear and nonlinear beam theory for P0 ¼ 1000 kN, L ¼ 20m, b ¼ 0.4m,
Table 1

Convergence study of number of N for L ¼ 20m, b ¼ 4m, h ¼ 0.9m, P0 ¼ 1000 kN, n ¼ 40m/s, T ¼ 0.1Tcr, e ¼ 0, O ¼ 0 for 250 time

steps

Number of term in the series, N Maximum deflections at the mid-point of the beam (m)

Linear Nonlinear

Z ¼ 0 Z ¼ 0.01 s Z ¼ 0 Z ¼ 0.01 s

6 0.331987 0.298285 0.331980 0.286470

8 0.334455 0.300810 0.334421 0.289276

10 0.334727 0.301256 0.334697 0.289762

12 0.334838 0.301394 0.334801 0.289906

14 0.334892 0.301449 0.334812 0.289963

16 0.334916 0.301475 0.334856 0.289984

18 0.334929 0.301488 0.334826 0.290062
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Table 2

Convergence study of number of time step for L ¼ 20m, b ¼ 0.4m, h ¼ 0.9m, P0 ¼ 1000kN, n ¼ 40m/s, T ¼ 0.1Tcr, e ¼ 0, O ¼ 0,

Z ¼ 0.01 s, N ¼ 12

Number of time step Maximum deflections at the mid-point of the beam (m)

Linear Nonlinear

50 0.301495 0.290023

100 0.301417 0.289894

250 0.301394 0.289906

500 0.301395 0.289901

1000 0.301396 0.289903

Fig. 2. Effect of internal damping of the beam on the maximum dynamic displacements under the moving load for L ¼ 20m, b ¼ 0.4m,

h ¼ 0.9m, T ¼ 0, e ¼ 0, O ¼ 0, n ¼ 20m/s, (a) Z ¼ 0, (b) Z ¼ 0.001 s, (c) Z ¼ 0.01 s, (d) Z ¼ 0.1 s; (– – –) linear, (–––) nonlinear.
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h ¼ 0.9m, T ¼ 0.1Tcr, where Tcr ¼ p2EI/L2
¼ 2.0985� 104 kN is Euler’s buckling load of the considered

beam, e ¼ 0, O ¼ 0, Z ¼ 0, 0.01 s at the constant velocity n ¼ 40m/s. It is seen from Tables 1 to 2
that when more than 12 terms were used, and the number of time steps was taken to be more than 250,
the numerical accuracy of the responses was improved only slightly, but the computational load was
considerably increased. Moreover, it should be noted that the nonlinear dynamic analysis in the time
domain requires iterations in each time step, and takes much more time than a nonlinear static analysis.
Therefore, the number of terms in the displacement functions and the number of time steps are set to 12 and
250, respectively, in the subsequent calculations. In the authors’ earlier work [17], the higher order poly-
nomial functions were used for expressing the displacement function of the beam, and good agreement was
obtained between the exact solution given by Timoshenko and Young [1] and the results given by Kocatürk
and S- ims-ek [17].
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Fig. 2 displays the effect of the internal damping on the dynamic behavior of the beam for L ¼ 20m,
b ¼ 0.4m, h ¼ 0.9m, T ¼ 0, e ¼ 0, n ¼ 20m/s. For this purpose, linear and nonlinear load-displacement
curves are given for the different internal dampings of the beam. In Fig. 2, the dynamic displacements under
the moving load are calculated for each value of magnitude of the moving load, which varies from
P0 ¼ 500 kN to P0 ¼ 8000 kN with 500 kN increments, and the maximum of the obtained displacements
according to linear and nonlinear theories for each magnitude of the moving load are plotted versus the
corresponding P0 values.

It is known from the different studies in the literature (for example, Ref. [27]), and from the static analysis
although it is not shown here, that when one of the supports of the beam is movable in the axial direction,
linear and nonlinear static deflections of the beam are equal to each other. In other words, nonlinear behavior
does not occur in the static case. However, it is seen from Fig. 2 that nonlinear behavior is observed in the
dynamic case even if one of the supports of the beam is movable. Fig. 2a shows that when the internal
damping of the beam is zero (Z ¼ 0), the difference between the linear and the nonlinear solutions are very
small. The difference in this case stems from taking into account the axial kinetic energy of the beam, as seen
from Eq. (10). In the nonlinear case, since the horizontal displacement u0(x,t) is caused by both axial prestress
load T and the bending, axial displacement varies with time and the kinetic energy due to horizontal motion
can be taken into account. However, in the linear case, since there is no coupling between the horizontal
motion and the transverse motion and since the axial prestress load is constant (independent of time),
horizontal motion is independent of time and therefore there is no kinetic energy due to horizontal motion.

On the other hand, the difference between the linear and the nonlinear displacements increases as the
internal damping of the beam increases, as shown in Figs. 2b–d. The reason for this behavior can be explained
as follows: It is known that the difference between linear and nonlinear displacements of a beam with
immovable supports is very significant in both static and dynamic case. The first term in the dissipation
function of the beam given by Eq. (9) represents the effect of the internal damping on the axial motion of the
Fig. 3. Effect of the magnitude of the moving load on the maximum dynamic displacements under the moving load for L ¼ 20m,

b ¼ 0.4m, h ¼ 0.9m, T ¼ 0.1Tcr, e ¼ 0, O ¼ 0, Z ¼ 0.01 s: (a) n ¼ 20m/s, (b) n ¼ 40m/s, (c) n ¼ 60m/s, (d) n ¼ 80m/s; (– – –) linear, (–––)

nonlinear.
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beam. This effect, like the axial kinetic energy, can be taken into account in the nonlinear case. This effect in
the axial direction increases with increase in the internal damping of the beam. Furthermore, for large values
of Z, the beam with one movable support behaves like a beam with immovable supports.

Fig. 3 shows the effect of the magnitude of the moving load on the maximum dynamic displacements under
the moving load (O ¼ 0) for L ¼ 20m, b ¼ 0.4m, h ¼ 0.9m, T ¼ 0.1Tcr, e ¼ 0, Z ¼ 0.01 s, and for various
values of velocity of the moving load. Fig. 3 reveals that the dynamic deflections of the nonlinear case are
smaller than those in the linear case, because the beam is stiffened by the internal normal force Nx generated
by the large deflections in the nonlinear case. Also, it is seen from this figure that displacements of the linear
and the nonlinear theory are very close to each other until the value of P0 ¼ 2000 kN; however, after this value
of P0, displacements deviation between the linear and the nonlinear theory increases for the considered
parameters. Furthermore, as seen from this figure, the velocity of the moving load plays an important role on
the load-displacement curves and the difference between the two theories is minimum for n ¼ 20m/s for the
considered velocities.

The effect of the length of the beam, whose length of span varies from L ¼ 5 to 30m with 1m increments,
on the maximum dynamic displacements under the moving load is presented in Fig. 4 for various values of the
velocity of the moving load, and for P0 ¼ 1000 kN, b ¼ 0.4m, h ¼ 0.9m, T ¼ 0.1Tcr, e ¼ 0, O ¼ 0, Z ¼ 0.01 s.
It is seen from Fig. 4 that the difference between the displacements of the two theories increases as the length
of the beam increases and decreases as the velocity of the moving load increases, as an expected situation. This
situation can be explained as follows: By examining Eq. (4b), it is seen that the magnitude of the internal
normal force depends on both the axial and the transverse displacements of the beam. As the length of the
beam increases, displacements and the rotations of the cross-sections increase, and then, the effect of the
internal normal force increases. Therefore, the beam becomes stiffer with an increase in the internal normal
force. It is interesting to note that when the velocity of the moving load is taken as n ¼ 20m/s as seen from
Fig. 4a, the difference between the deflections predicted by the two beam models is very small for the beam
whose length is up to L ¼ 25m. After this value of the beam length, the displacements of the two models
Fig. 4. Effect of the length of the beam on the maximum dynamic displacements under the moving load for P0 ¼ 1000 kN, b ¼ 0.4m,

h ¼ 0.9m, T ¼ 0.1Tcr, e ¼ 0, O ¼ 0, Z ¼ 0.01 s: (a) n ¼ 20m/s, (b) n ¼ 40m/s, (c) n ¼ 60m/s, (d) n ¼ 80m/s; (– – –) linear, (–––) nonlinear.
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Fig. 5. Effect of the depth of the beam on the maximum dynamic displacements under the moving load for P0 ¼ 1000 kN, L ¼ 20m,

b ¼ 0.4m, T ¼ 0.1Tcr, e ¼ 0, O ¼ 0, Z ¼ 0.01 s: (a) n ¼ 20m/s, (b) n ¼ 40m/s, (c) n ¼ 60m/s, (d) n ¼ 80m/s, (– – –) linear, (–––) nonlinear.
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deviate from each other. On the other hand, for the values of velocity n ¼ 40m/s and 60m/s, the displacements
deviation of the two theories becomes significant at the lower values of the beam length compared with the
values of beam length in the case n ¼ 20m/s. Note also that the difference between the two displacement
curves is minimum for n ¼ 80m/s.

Fig. 5 displays the effect of the depth of the beam on the maximum dynamic displacements under the
moving load for various values of the velocity of the moving load and for P0 ¼ 1000 kN, L ¼ 20m, b ¼ 0.4m,
T ¼ 0.1Tcr, e ¼ 0, O ¼ 0, Z ¼ 0.01 s. As would be expected, as the depth of the beam increases, the deflections
of the beam decrease. However, it is known from the linear beam theory that deflections of a beam are
inversely proportional to the moment of inertia of the cross-section, and also the moment of inertia is
proportional to the third order of the depth of the beam. It is clearly seen from this figure that the difference
between the deflections of the linear and the nonlinear model increases as the depth of the beam decreases.

In Fig. 6, the effect of the velocity of the moving load on the maximum absolute value of displacements,
velocities and accelerations of the point under the moving load is presented for P0 ¼ 1000 kN, L ¼ 20m,
b ¼ 0.4m, h ¼ 0.9m, T ¼ 0.1Tcr, e ¼ 0, Z ¼ 0.01 s. In these figures, velocity of the moving load ranges from
n ¼ 1 to 100m/s with 1m/s increments. It can be observed from Fig. 6 that the maximum absolute values of
the displacements, the velocities and the accelerations of the beam obtained by the linear beam model are
greater than those of the nonlinear beam model. It is worth pointing out that the maximum values of the
displacements increase with an increase in the velocity of the moving load until a certain value of the velocity
of the moving load, and then decrease after this value of the velocity. However, the maximum absolute values
of the velocities and the accelerations of the beam show a different character than the character of the
displacement curve in the considered velocity range. It is also noticed from this figure that the difference
between the maximum deflections of the two beam theories increases for the values of the velocity of the
moving load between approximately 25 and 50m/s, and after approximately n ¼ 50m/s, the two deflection
curves continuously become close to each other. However, the variation of the velocities and the accelerations
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Fig. 6. Effect of the velocity of the moving load on the dynamic responses under the moving load for P0 ¼ 1000kN, b ¼ 20m, b ¼ 0.4m,

h ¼ 0.9m, T ¼ 0.1Tcr, e ¼ 0, O ¼ 0, Z ¼ 0.01 s, (– – –) linear, (–––) nonlinear.
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of the beam with the velocity of the moving load show a different behavior from the displacements,
as displayed in Figs. 6b and c.

Fig. 7 shows the effect of the axial prestress load with no eccentricity on the displacements, velocities and
accelerations under the moving load for T ¼ 0, 0.1Tcr, 0.2Tcr, P0 ¼ 1000 kN, L ¼ 20m, b ¼ 0.4m, h ¼ 0.9m,
Z ¼ 0.01 s at the constant velocity n ¼ 20m/s. The figures in the first column represent the beam without the
prestress load. Fig. 7 indicates that the absolute values of the responses increase as the prestress load increases
because of the compression softening effect [10,19]. This effect occurs in the prestressed beams and can be
explained as follows. The prestress load reduces the stiffness of the beam, and therefore this effect softens the
beam. On the other hand, the internal nonlinear normal force has an opposite effect on the stiffness properties
of the beam compared with the prestress load. In other words, for the prestressed beams, the decrease in the
stiffness of the beam due to the prestress load is partially compensated by increase in the stiffness of the beam
due to the large deflections.

Fig. 8 shows the effect of the eccentricity of the prestress load on the dynamic displacements under the
moving load for P0 ¼ 1000, 2000 kN, L ¼ 20m, b ¼ 0.4m, h ¼ 0.9m, Z ¼ 0.01 s, T ¼ 0.1Tcr. The black and
the gray lines represent the linear and the nonlinear responses, respectively. When the prestress load is
eccentric, the beam has initial upward deflections before the arrival of the moving load. Therefore, as stated
earlier, the initial upward deflections are calculated form a nonlinear static analysis, and must be introduced in
Newmark-b algorithm as initial conditions of the problem. It is clearly seen from Fig. 8 that deflections of the
beam decrease as the eccentricity of the prestress load increases. This means that the internal tensile stresses
due to the moving load can be reduced or completely eliminated by the application of the eccentric prestress
load. It is noted in Refs. [17,19] that the total displacements can be obtained by superposing the deflections
caused by the moving harmonic load plus the axial prestress load and the deflections due to the bending
moments due to the eccentricity of the prestress load. This is true when the superposition principle is valid:
namely, when the problem is linear. However, in the present study, the problem is nonlinear and for this
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Fig. 7. Effect of the prestress load on the dynamic responses at the mid-point of the beam for P0 ¼ 1000kN, L ¼ 20m, b ¼ 0.4m,

h ¼ 0.9m, n ¼ 20m/s, O ¼ 0, e ¼ 0, Z ¼ 0.01 s, (– – –) linear, (–––) nonlinear.
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reason the superposition principle is not valid. Also, the maximum of the obtained displacements and the
corresponding velocities are given in Table 3.

Figs. 9–10 display the displacements at the mid-point of the beam for various values of the magnitude
of the moving load and for L ¼ 20, 30m, b ¼ 0.4m, h ¼ 0.9m, T ¼ 0.1Tcr, e ¼ 0, Z ¼ 0.01 s at the constant
velocity n ¼ 20m/s. In these figures, the excitation frequency is considered as O ¼ 0, 0.50, 0.75, 1.0, 1.25,
1.5o1l (o1l is the first linear natural frequency of the beam). The first linear natural frequencies of the beams
are obtained as o1l ¼ 17.62603 rad/s and o1l ¼ 7.83379 rad/s for L ¼ 20m and L ¼ 30m, respectively,
from the equation o1l ¼ ðp=LÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEI=rAÞð1� T=T crÞ

p
[1].

From these figures, it is clear that when o ¼ o1l for the linear beam model, very large displacements, which
are shown by the grey-solid lines, are obtained for the considered beam, as an expected situation. Inspection of
Figs. 9a and 10a shows that the linear and the nonlinear responses almost coincide with each other for the
small values of the magnitude of the moving load. However, with increase in the value of P0, the difference
between the two solutions becomes significant as seen from Figs. 9c and 10c. It should be noted at this stage
that nonlinear natural frequencies vary with the vibration amplitude of the deflection of a beam, and are
different from linear frequencies that are independent of the amplitude of the vibration. The cause that makes
the nonlinear frequencies change with the amplitude of the vibration is the variation in the stiffness of the
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Fig. 8. Effect of the eccentricity of the prestress load on the dynamic displacements under the moving load for L ¼ 20m, b ¼ 0.4m,

h ¼ 0.9m, T ¼ 0.1Tcr, O ¼ 0, Z ¼ 0.01 s: (a) P0 ¼ 1000 kN, (b) P0 ¼ 2000kN, (–––) e ¼ 0, (– – –) e ¼ 0.12m, ( � � � � � � � ) e ¼ 0.24m,

(– � – � – � ) e ¼ 0.36m; (–––) linear, ( ) nonlinear.

Table 3

Maximum deflections under the moving load and the corresponding velocities for Fig. 8

P0 (kN) e (m) Max. w (m) n (m/s)

Linear Nonlinear Linear Nonlinear

1000 0 0.308642 0.297261 49 49

0.12 0.292621 0.282931 49 49

0.24 0.276605 0.268473 49 49

0.36 0.26063 0.253878 49 50

2000 0 0.617285 0.544385 49 50

0.12 0.601264 0.533412 49 50

0.24 0.585243 0.522282 49 50

0.36 0.569222 0.511007 49 50
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beam with the displacements. Further, the experimental and the theoretical studies in the literature show that
nonlinear frequencies increase with increasing vibration amplitude of the beam.

It is seen from Figs. 9 to 10 that increase in the load frequency increases the difference between the
displacements of the linear and the nonlinear beam theories significantly until the load frequency values that
are close to the first natural frequency of the system. After these frequency values that are close to the first
natural frequency of the system, the difference between the two theories becomes small. Namely, increase in
the load frequency causes decrease in the difference of the results of the two theories. Also, as the length of the
beam increases, while the other parameters remain the same, the displacements of the beam increase, and
therefore, as an expected result, increase in the length of the beam increases the difference between the linear
and the nonlinear displacements.

Moreover, the numerical calculations for the various values of the eccentricity are made for e ¼ 0, 0.12,
0.24, 0.36m for the parameters used for Figs. 9 and 10, and it is seen that for the considered parameters of the
beam, in the considered range of the eccentricity, the eccentricity of the prestress load does not affect the
results significantly. Therefore, it is concluded that to give the related figures for various eccentricity makes
no sense.
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Fig. 9. Displacements at the mid-point of the beam, L ¼ 20m, b ¼ 0.4m, h ¼ 0.9m, n ¼ 20m/s, T ¼ 0.1Tcr, e ¼ 0, Z ¼ 0.001 s, (a1–a2)

P0 ¼ 500kN (b1–b2) P0 ¼ 1000 kN (c1–c2) P0 ¼ 2000 kN, (–––) O ¼ 0, (– – –) O ¼ 0.5o1l, (– � – � –) O ¼ 0.75o1, ( ), O ¼ o1l,

( ), O ¼ 1.25o1l, ( ), O ¼ 1.5o1l.
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5. Conclusions

The dynamic response of an eccentrically prestressed beam subjected to a concentrated moving harmonic
load has been studied within the framework of the Euler–Bernoulli beam theory by taking into account the
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Fig. 10. Displacements at the mid-point of the beam, L ¼ 30m, b ¼ 0.4m, h ¼ 0.9m, n ¼ 20m/s, T ¼ 0.1Tcr, e ¼ 0, Z ¼ 0.001 s, (a1–a2)

P0 ¼ 500kN (b1–b2) P0 ¼ 1000 kN (c1–c2) P0 ¼ 2000 kN, (–––) O ¼ 0, (– – –) O ¼ 0.5o1l, (– � – � –) O ¼ 0.75o1l, ( ), O ¼ o1l,

( ), O ¼ 1.25o1l, ( ), O ¼ 1.5o1l.
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effect of the geometric nonlinearity. The rotary inertia, axial displacement and axial inertia are included in the
formulation. The nonlinear equations of motion are derived by using Lagrange’s equations, and they are
solved by using the implicit time integration method of Newmark-b in conjunction with the Newton–Raphson
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method. The effects of the large deflections, the internal damping of the beam, the velocity of the moving
harmonic load, the prestress load, the eccentricity of the prestress load and the excitation frequency on the
dynamic response of the beam are investigated. The comparison and the convergence studies are performed. It
is observed from the investigations that the above-mentioned effects play very important roles in the dynamic
behavior of the beam.
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